Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 00-035

Weight Adjustment Schemes For a Centroid Based Classifier

Shrikanth Shankar and George Karypis

May 30, 2000

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
30 MAY 2000 2. REPORT TYPE _
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

Weight Adjustment Schemes For a Centroid Based Classifier £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Army Resear ch Office,PO Box 12211,Research Triangle REPORT NUMBER
Park,NC,27709-2211

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 22
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Weight adjustment schemes for a centroid
based classifier *

Shrikanth Shankar and George Karypis

University of Minnesota, Department of Computer Science
Minneapolis, MN 55455

{shankar, karypig@cs.umn.edu

Abstract

Inrecent years we have seen atremendous growth in the valfite documents available on the Internet, digital
libraries, news sources, and company-wide intra-netsoratic text categorization, which is the task of assigning
text documents to pre-specified classes (topics or thenfiekjooments, is an important task that can help both in
organizing as well as in finding information on these hugeueses. Similarity based categorization algorithms such
ask-nearest neighbor, generalized instance set and centae&tltxlassification have been shown to be very effective
in document categorization. A major drawback of these #@lywis is that they use all features when computing the
similarities. In many document data sets, only a small nurobthe total vocabulary may be useful for categorizing
documents. A possible approach to overcome this problem lisatrn weights for different features (or words in
document data sets). In this report we present two fastiiterfeature weight adjustment algorithms for the linear-
complexity centroid based classification algorithm. Ogoathms use a measure of the discriminating power of each
term to gradually adjust the weights of all features corently. We experimentally evaluate our algorithms on the
Reuters-21578 and OHSUMED document collections and caripagainst Rocchio, Widrow-Hoff and SVM. We
also compared its performance in terms of classificationr@oy on data sets with multiple classes. On these data
sets we compared its performance against traditionalifilrsssuch ag-nn, Naive Bayesian and C4.5. Experiments
show that feature weight adjustment improves the perfoomafthe centroid-based classifier by 2- 5% , substantially
outperforms Rocchio and Widrow-Hoff and is competitive@VM. These algorithms also outperform traditional
classifiers such dsnn, naive bayesian and C4.5 on the multi-class text doctidea sets.

*This work was supported by NSF CCR-9972519, by Army Rese@ffibe contract DA/DAAG55-98-1-0441, by the DOE ASCI prograand
by Army High Performance Computing Research Center canimamber DAAH04-95-C-0008. Access to computing facilitieas provided by
AHPCRC, Minnesota Supercomputer Institute. Related [sa@er available via WWW at URLlhttp://www.cs.umn.edu/ karypis

1 Introduction

We have seen a tremendous growth in the volume of online text do¢smeailable on the Internet, digital libraries,
news sources and company-wide intra-nets. It has been forecasted that theserks along with other unstructured
data will become the predominant data type stored online. Automaticéegorization [33, 43, 16] which is the
task of assigning text documents to pre-specified classes of documentsimpa@ant task that can help people
find information from these huge resources. Text categorization peekage challenges due to a large number of
attributes, attribute dependency, multi-modality and large traisétg

The various document categorization algorithms that have been develogreth® years [36, 1, 8, 11, 25, 16, 19,
2,42, 20, 13] fall under two general categories. The first category cartt@ditional machine learning algorithms
such as decision trees, rule sets, instance-based classifiers, probaialstiiiers, support vector machineg;, that
have either been used directly or after being adapted for use in the contlmdwhent data sets. The second category
contains specialized categorization algorithms developed in the Infenmaétrieval community. Examples of such
algorithms include relevance feedback, linear classifiers, generalized instdictassifiersetc

A general class of algorithms that has been shown to produce good documegpotizatén performance is simi-
larity based. This class contains algorithms suck-asarest neighbor[42], generalized instance set[19] and centroid
based classifiers[12]. In these algorithms the class of a new documestéisnghed by computing the similarity be-
tween the test document and individual instances or aggregates of thegreéhj and determining the class based on
the class distribution of the nearest instances or aggregates.

A major drawback of these algorithms is that they use all the featurds edmputing the similarity between a test
document and the training set instances or aggregates. In many documergtsiataly a relatively small number
of the total features may be useful in categorizing documents, and usitinge datures may affect performance. A
possible approach to overcome this problem is to learn weights ferelift features (i.e. words). In this approach, each
feature has a weight associated with it. A higher weight implies that d¢laisife is more important for classification.
When the weights are either 0 or 1 this approach become the same as featur@saléetiefer to such algorithms as
feature weight adjustment or just weight adjustment techniques.

This report presents two fast iterative feature weight adjustment tigwsifor the linear-complexity centroid based
classification algorithm. These algorithms use a measure of the disating power of each term to gradually adjust
the weights of all features concurrently. Analysis shows that this aghrgradually eliminates the least discriminating
features in each document thus improving its classification accuracy. We rexpéaily evaluate these algorithms on
the Reuters-21578 [24] and OHSUMED [14] document collection and conitggrerformance in terms of precision
and recall against Rocchio [32], Widrow-Hoff [39] and Support vector meehi35, 16]. We also compared its
performance in terms of classification accuracy on data sets with multipkeslahese data sets are described in
Section (6.3) and in [12]. On these data sets we compared its performanest aigalitional classifiers such ksn,
Naive Bayesian and C4.5. Experiments show that feature weight adjustmm@oties the performance of the centroid-
based classifier by 2- 5% , substantially outperforms Rocchio and Withaffvand is competitive with SVM. These
algorithms also outperform traditional classifiers suck-as, naive bayesian and C4.5 on text document data sets.

The organization of the report is as follows. Section (2) describes sbiee other classification schemes used
on text data while section (3) gives a brief overview of the centroicgthatassifier. Section (4) describes the two
weight adjustment schemes and discusses their computational complexiignS5) presents an analysis of the two
schemes. Section (6) documents the results of these schemes on varioesstasarse|l as the performance of other
classifiers on the same data sets.

2 Previous work

2.1 Linear Classifiers

Linear classifiers [25] are a family of text categorization learning algoritthat learn a feature weight vectoy for
every category. Weight learning techniques such as Rocchio [32] and Widodfxalgorithm [39] are used to learn
the feature weight vector from the training samples. These weight lggatgorithms adjust the feature weight vector
such that features or words that contribute significantly to the categmn have large values. In both Rocchio and
Widrow-Hoff the weight vectomw is used for classification as follows. When a test documéntto be classified a
pre-defined thresholdis used.x is assigned to the positive class when x > t. Note that this concept of a weight
vector is very different from what we use

Rocchio Rocchio [32, 25] can be used as batch algorithm to learn a weight vector froristing weight vector
and a set of training examples. Thth componentv; of the new vector is

diec G yZi¢C di j
nc n—nc

1)

wj =awgj+p

where n is the number of training instances, C is the set of positw@irtig instances, ana is number of positive
training instances.
Usually rocchio uses only positive weights so all negative weightsemet to 0.

Widrow-Hoff ~ The Widrow-Hoff algorithm [39, 10, 25] is an online algorithm ieh runs through the training
examples one at a time updating the weight vector.
The new weight vectoi; 1 is computed fromp; as follows.

Wwit1,j = wij — 2n(wj - di — yi)dij 2

wherey; is label of rowd; and is either 0 (negative class) or 1 (positive class). The parametertrols how quickly
the weight vector can change and how much influence a new example has on it.

While it may seem that the final vectar,, 1 should be used there are theoretical results [25] that suggest that a
better final weight vector is the average of all the weight vectors computed tie way.

n

+
[

wi ®)

W=

Sl

1
N

2.2 Support Vector Machines

Support Vector Machines (SVM) is a new learning algorithm proposeddpyn [35]. This algorithm was introduced

to solve two-class pattern recognition problem using the Structusid Rinimization principle [35, 6]. Given a
training set in a vector space, this method findstbstdecision hyper-plane that separates two classes. The quality of
a decision hyper-plane is determined by the distance (referred as margiweebetivo hyper-planes that are parallel
to the decision hyper-plane and touch the closest data points of each diedsesidecision hyper-plane is the one
with the maximum margin. The SVM problem can be solved using quadgraigramming techniques [35, 6]. SVM
extends its applicability on the linearly non-separable data sets lar eting soft margin hyper-planes, or by mapping
the original data vectors into a higher dimensional space in which tlaepdérits are linearly separable. An efficient

implementation of SVM and its application in text categorization of Ret241578 corpus is reported in [16]. We use
this implementation for our comparison purposes.

2.3 k Nearest Neighbor

k-nearest neighbok¢(NN) classification is an instance-based learning algorithm that has been apyied catego-
rization since the early days of research [27, 15, 41, 5], and has been shpradtme better results when compared
against other machine learning algorithms such as C4.5 [31] and RIPRHRfdis classification paradigrk,nearest
neighbors of a test document are computed first. Then the similarititbgssafocument to thk nearest neighbors are
aggregated according to the class of the neighbors, and the test docurassigised to the most similar class (as
measured by the aggregate similarity). A major drawback of the sityilaveasure used ik-NN is that it uses all
features equally in computing similarities. This can lead to poor sirhilaneasures and classification errors, when
only a small subset of the words is useful for classification. To adthesproblem, a variety of techniques have been
developed for adjusting the importance of the various terms in asgpdrsetting. Examples of such techniques in-
clude preset weight adjustment using mutual information [9, 38,R#LIEF [17, 18], and variable-kernel similarity
metric learning [26].

24 C4.5

A decision tree is a widely used classification paradigm in machine learninglaadmining. The decision tree
model is built by recursively splitting the training set based on a lpaaitimal criterion until all or most of the
records belonging to each of the leaf nodes bear the same class label. C4s5gq3diflely used decision tree-based
classification algorithm that has been shown to produce good classificasiolts; primarily on low dimensional data
sets. Unfortunately, one of the characteristics of document data sedstisahe is a relatively large number of features
that characterize each class. Decision tree based schemes like C4.5 do not worélvierthis scenario due to over-
fitting [5, 13]. The over-fitting occurs because the number of sampledatvely small with respect to the number
of distinguishing words, which leads to very large trees with limgederalization ability. The C4.5 results were
obtained using a locally modified version of the C4.5 algorithm capdiilamdling sparse data sets.

2.5 Naive Bayesian

The naive Bayesian (NB) algorithm has been widely used for document clagsifiatd has been shown to produce
very good performance [22, 23, 21, 28]. For each document, the naive Bayagorithm computes the posterior
probability that the document belongs to different classes and assigrthé class with the highest posterior proba-
bility. The posterior probability? (ck|d;) of classck given a test documen is computed using Bayes rule

P (c) P (di |ck)

P(ckldi) = —pa) (4)
|

andd; is assigned to the class with the highest posterior probabilityjghat

Class of dj = arglgggﬁ{P(cmdi)} = arg max{P(c) P(dilc)}, (5)

whereN is the total number of classes. The naive Bayesian algorithm models eacheafdchnas a vector in the
term spacei.e., di = (diz, di2, ..., dim), whered;j models the presence or absence of ftieterm. Naive Bayesian

computes the two quantities required in (5) as follows. The approrigiass priors®(cy)) are computed using the
maximum likelihood estimate

1Pl Pexldh)

P(ck) D ,

(6)
whereD is the set of training documents aid| is the number of training documentsih The P(d; |ck) is computed
by assuming that when conditioned on a particular otasthe occurrence of a particular valuedf is statistically
independent of the occurrence of any other value in any otherdgrnnder this assumption, we have that

m

Py = []Pjle, (7

=1

and because of this assumption this classifier is called “naive” Bayesian.

3 Centroid-Based Document Classifier

In the centroid-based classification algorithm, the documents are repesesihg the vector-space model [33]. In
this model, each documedtis considered to be a vector in the term-space. In its simplest form, eacidntis
represented by thierm-frequencyTF) vectords = (tfy, tfy, . .., tf,), wheretf; is the frequency of thith term in the
document. A widely used refinement to this model is to weight each term bas¢slioverse document frequency
(IDF) in the document collection. The motivation behind this weigdtis that terms appearing frequently in many
documents have limited discrimination power, and for this reasonrtbey to be de-emphasized. This is commonly
done [33] by multiplying the frequency of each terrby log(N/df,), whereN is the total number of documents in
the collection, andlf, is the number of documents that contain itteterm {.e., document frequency). This leads to
thetf-idf representation of the documeng,, amdf = (tf; log(N/dfy), tf, log(N/dfy), . . ., tf,, log(N/df,))). Finally, in
order to account for documents of different lengths, the length of each dotwmector is normalized so that it is of
unitlength,i.e., ||atfidf||2 = 1. In the rest of the paper, we will assume that the vector represerﬂaﬁarach document
d has been weighted usitigidf and it has been normalized so that it is of unit length.

In the vector-space model, the similarity between two docunuraisdd; is commonly measured using the cosine
function [33], given by o
di - dj

COS(&,J‘)zﬁ,
IR TP AT

(8)

where “” denotes the dot-product of the two vectors. Since the document vecwaos unit length, the above formula
simplifies to cogd, ch) =d JJ
Given a seS of documents and their corresponding vector representations, we defirentiwd vectorC to be

é:iza, 9)

|S| deS

which is nothing more than the vector obtained by averaging the wesfttie various terms present in the documents
of S. We will refer to theS as thesupporting set for the centroicC. Analogously to documents, the similarity between
two centroid vectors and between a document and a centroid vector are compntethasiosine measure. In the

first case, o
> o Gi-Cj
cogCi,Cj) = =—=—, (10)
ICill2 % IICjll2
whereas in the second case, oo o
- o d-C d-C
coqd,C) = — — = ——.
Idllz = ICll2 [ICll2
Note that even though the document vectors are of length one, the cevgmats will not necessarily be of unit
length.
The idea behind the centroid-based classification algorithm [12] iemely simple. For each set of documents

belonging to the same class, we compute their centroid vectors. If trekeckasses in the training set, this leadkto

(11)

centroid vectorsél, 62, el Ck}, where eactfi is the centroid for théth class. The class of a new documgrns
determined as follows. First we use the document-frequencies of tlmugddrms computed from the training set to
compute thef-idf weighted vector-space representatiox oiind scale it s& is of unit length. Then, we compute the
similarity betweerk to all k centroids using the cosine measure. Finally, based on these similaritiessigrx to
the class corresponding to the most similar centroid. That is, thealasss given by

argj :nlw’?(k(cos(i, ij). (12)

The computational complexity of the learning phase of this centra&kd classifier is linear on the number of
documents and the number of terms in the training set. The computdtibe @ector-space representation of the
documents can be easily computed by performing at most three passes tthieughining set. Similarly, alk
centroids can be computed in a single pass through the training set, as emolddsrcomputed by averaging the
documents of the corresponding class. Moreover, the amount of timeaddaol classify a new documents at most
O(km), wherem is the number of terms presentin Thus, the overall computational complexity of this algorithm is
very low, and is identical to fast document classifiers such as Naive Bayesian.

4 Weight Adjustment for Centroid based Classifier

In this section we present algorithms to improve the classificatiompagnce achieved by the centroid-based clas-
sifier by adjusting the weight of the various features. In the restisfséction we first present two iterative weight-
adjustment algorithms, and finally discuss how to improve the pedace in the case of binary classification.

One approach to weight adjustment (and feature selection) is to choosd asmiaér of features and adjust their
weights in order to improve classification accuracy. This approach has begn ghachieve poor results in the text
domain where the number of important’ features is usually quite lavgigh this in mind our approach performs a
simultaneous weight adjustment of all the features.

4.1 Fixed-Weight Adjustment Schemes

Any scheme that adjusts the weights of the various featieestérms) has to perform two tasks. First, it must rank
the various features according to their discriminating power. Secondisit adjust the weight of the various features
in order to emphasize features with high discriminating power and/or gdvasize features with none or limited
discriminating power.

Over the years, a number of schemes have been developed to measure thendisiegrpower of the various

features such as information gain, entropy , gini index, afdtatistic. In our algorithm, the discriminating power of
each feature is computed using a measure similar to the gini index,@asgolletm be the number of different classes,
and Iet{él, éz, L ém} be the centroid vectors of these classes. For eachitdﬂh‘ﬁ = {C1i,C2i,...,Cm,i} be
the vector derived from the weight of thé term in each one of the centroids, and Ief’i = 'ﬂ/||'ﬁ [l1 be the
one-norm scaled version af. The discriminating power of thigh termP, is given by

m
R=>TA. (13)
=1

which is nothing more than the square of the length offthevector. Note that the value &% is always in the range
[1/m, 1]. The lowest value oPF; is achieved wheﬂ'if1 = ifz =...= Tifm i.e., aterm is equally distributed amongst
all the classes; whereas the highest is achieved wharttttlerm occurs in only a single class. Thus, a value close to
one indicates that the term has a high discriminating power, whereas acl@edo }J m indicates that the terms has
little if any discriminating power. In the rest of this paper, we wéfer toP; as thepurity of theith term, and we will
refer to the vectoP = {P1, Po, ..., Py} of the purities of all then terms as theurity vector.

Having ranked the various terms using the purity as a measure of ikeiinginating power, the next step is to
adjust their weights so that terms with higher discriminating power faecmore important than terms with lower
discriminating power. A simple way of doing this, is to scale each ont@®ftterms according to their purity. In
particular, each document vectbis transformed to a new vectdf = {P1dq, Podo, ..., Pd, ... Pydn}. Given this
set of transformed document vectors, the centroid classification algonitthproceed to scale each document to be
of unit length, and then build a new set of centroid vectors for the uaritasses. A new document will be classified
by first scaling its terms according to the purity vector and then compitsrsimilarity to the new set of centroids.
Since the purity values are always less or equal to one, the weight of tbevéerms in each transformed document
d’ will always be equal or smaller than their original weights. However, disbeidiscussed in section (5), the re-
normalization operation performed by the centroid classification algorituses the purest terms in each document
to actually gain weight, achieving the desired feature weight adjustments.

Unfortunately, this simple scheme has two drawbacks. The first isttiietveight adjustment approach may
cause too steep of a change in the weights of terms. When this happens gie @fed document tends to get
concentrated into a very small number of terms. As a result there could aflagormation that can negatively affect
the classification performance. The second is that in some cases, this sme@tep processes may not sufficiently
change the weights of the various terms. Consequently, the new rejatesewill be similar to the original one, with
almost no change in the classification accuracy. For this reason, our wejgsinaeint algorithm adopts a somewhat
different approach that attempts to address these problems.

Our algorithms solve the first problem by changing the weightsef/tirious features by a smaller factor than that
indicated by their purity. In particular, for each terpmwe scale its weight by"il/‘s, wheres > 1. Since, the purities
are less than one!?il/‘3 will be closer to one, thus leading to smaller changes. To address the saobtehp we
perform the weight-adjustment operation multiple times. For each @atave use the classification accuracy on a
portion of the training sei.g., validation set) in order to determine how many times to perform thghweidjustment.
The weight-adjustment process is stopped when the classification parfoeron the validation set starts to decrease.
The details of the algorithm are shown in Figure 1.

Once the number of weight adjustment iteratibhss been computed, a new test docundeistclassified by first
adjusting the weights of its terms by going through the same sequénoseight adjustment iterations, and then

1. Split the training seT into trainingT’ and validationv

2. Compute the accuracy dhof the centroid classifier built o’
3. Computels using the documents if’

4. 1 =0

5. Foreachdocumedf € T

6 For each ternj

7 dij = le/adi,j

8. Scaled; so that|di||> =1

9. Compute the accuracy dhof the centroid classifier built o’
10. If accuracy does not decrease

11. I =I1+1

12. Goto 5

Figure 1: The fixed weight adjustment algorithm.

using the centroid classification algorithm on the weight-adjusteditigiset to determine its class. This process can
be speeded up by using the fact that applyiitgrations of weight-adjustment followed by unit-length scalinghis t
same as applying a single weight-adjustment in which the weight of eauhj tex multiplied by PJ!/‘S, followed by a
single unit-length scaling (see Appendix A for a proof).

Computational Complexity Any algorithm must be reasonably efficient to be of practical significance.obne
the major advantages of the centroid-based classifier is that it is a lineaclassifier [12] which outperforms other
more complex algorithms. In this section we discuss the effect ofahtife weight adjustment algorithm on the
computational complexity of the centroid-based algorithm. Both teslffeature weight adjustment scheme and the
centroid-based algorithms iterate over the document-term matrix. Tdtisxis a sparse matrix and is usually stored
in a sparse representation. These representations have both space ampiexities of O (nnz), where nnz is the
number of non-zeros in the document-term matrix. Such a representatioe ddcument-term matrix is assumed in
the following analysis.

With the fixed feature-weight adjustment step the classifier’s learning stagists of three steps. In the first step,
the optimum number of iteratiorsis to be determined. In this step, weight adjustment is applied to sénieo
documents while the other documents are classified. Applying weiglatslt@ument and normalizing it is linear in
the number of terms in the document, as is classifying a document. Eaatioiteis therefore O (nnz). From this, it is
reasonable to assume that the determihiisgO (nnz *1). Experimental observation indicate this a small constant
(usuallyl < 20). Assuming constamfthe complexity of this step can be rewritten as O (nnz).

The second step consists of applying the weight vediores to the complete training set. However as discussed in
the previous section this can be done in 1 iteration through the dertaterm matrix. Using this optimization means
the second step has complexity O (nnz).

The final step consists of computing the centroids of the transformatadset. The complexity of this step has been
shown to be O (nnz) [12]. Putting the complexities of the threesstegether, the overall complexity of the learning
phase is O (nnz).

While classifying, the feature-weight vector is applied totfridf representationx of the test document to produce

the transformed test vect&f. This step is QK’|) where|X'| is the number of terms in the document. Classifying this
document using the centroid-based algorithm has complexky@X’|) where k is the number of classes (and hence
the number of centroids).

Thus the fixed feature-weight adjustment does not affect the linear timelexitgpf the centroid-based scheme.
This is important as the speed of the algorithm is one of its primargatdges.

4.2 Variable-Weight Adjustment

Inthe algorithmin Section (4.1) the feature-weight vector is computed at from the original document-term matrix.
After each application of the weight vector, the matrix changes. Both theotgatnd the purity information change as
a result. In this section, we present an algorithm which uses this changgdipformation to recalculate the weight
vector at each iteration. Since the weight vector changes at each iteration, thihalgs called the variable-weight

feature adjustment algorithm (VWA for short). This algorithm isnsnarized in Figure 2.

1. Split the training set into trainingT’ and validatiorvV
2. Compute the accuracy dhof the centroid classifier built o’
3. =0
4. Computels' using the documents if’
5. Foreachdocumedf € T
6. For each ternj
7. dij = (P})l/‘sdi,j
8. Scaled; so that|di||> =1
9. Compute the accuracy dhof the centroid classifier built of’
10. If accuracy does not decrease
11. I =1+1
12. Goto4
Figure 2: The variable weight adjustment algorithm.
For atest document x, with itéidf representatio” = {x1, X, ..., Xt}, we compute the transformed test document
as

X' = {Xqw1, Xows, ..., Xewt} (14)

This represents the test document in the transformed space and is usegirtiogrsimilarity with the centroids. This
weight vector can be computed during step 2 of the learning phase withpatidad complexity as

B = {wa, ..., w} = {(PHY - (PHY? . (P, .. (PHYP . (PRY .. (PHY?) (15)

This is a result of applying a weight.€., multiplying each term and re-normalizing) being associative. (See
Appendix A) We can track this vector by using a single vector initializeand updating it while computing purities
in step (4) in Figure 2.

Computational Complexity Since the algorithm described is a modification of the algorithm in zec#.1),
analysis here is based on the analysis in section (4.1). The main diffaretiee two algorithms is that once the
optimum number of iterationshas been determined in the FWA algorithm, the training set can be weightetin
iteration. In the VWA algorithm, the weights are recomputed at the erehoh iteration sob iterations need to be
performed. As a result the complexity of this step becomes*(z) from O (nnz). However with the assumption
thatl is a constant, this revised algorithm does not affect the linear time leaitypof the centroid-based algorithm.
Computing the transformed test has complexity on the order of thauof terms in the test document. Again this
does not affect the time complexity of the classification of the phaskeoténtroid-based classifier which remains
O(k * [X]).

4.3 Binary Classification

A common classification problem in information retrieval is that of depilg a classifier that can correctly identify
documents that belong to a particutarget class from a large collection of documents. This is a typical binary
classification problem in which we try to develop a model fortmgetclass versus theest The weight adjustment
scheme that we described in the previous sections can be directly useskimthof problems. However, the centroid
scheme does best when each class contains related documents. The negafies obass however too diffuse for
this. As a result instances of the negative class tend to get classifieditassp®¥e propose the following solution to
handle this. We cluster the negative set iktdusters. While computing the centroids and the purity we treat this as
ak + 1 class problem. When classifying, we compute the similarity of theud@nt to theék negative clusters. We
take the largest value amongst these, and treat it as the similarity af¢hiengnt to the negative set. The similarity of
the document to the positive set is directly computed from the centfdite positive class. Similarly if we find that a
class has a multi-modal distribution we can run a clustering algotithidentify sub-classes within it. We could then
treat each of these sub-classes as a separate class.

5 Analysis

We first present a model of how the weight adjustment process affects ¢hendats. Consider the terms in a doc-
ument sorted according to decreasing purity. When we apply the weightradjusscheme to this document and
re-normalize it, every term will gain some weight from the terms hgéss purity than it and lose some weight to

purer terms. Consider the initial document vectofdsdy, .. ., di}, where)_ di2 = 1. Let us apply a weight vector
w = {w1, wy, ..., wt}. We assume without loss of generality that< ... < wy < wy < 1. Then the new document
vectord’ is given by

d = {d,dj,....d[} (16)
where g

A== (17)

V2 (wj - dp)?
We rewrite this as
dA
d = ——— (18)

wherep; = 31, Lj = Y25(pjdj?, pj = 1andG| = Y5 ,1(pjdj2. pj < 1. Also letL; = ¥"j_} d? and
Gi = th:i+ldj2' ThusL > L;j andG| < G;

We also know that; + di2 +Gj=1.If Li’ —Li > Gj — Gi’, then the denominator in (18) is greater than 1, thus
df < d; i.e. itloses weight. On the other hand.if — Lj < G; — G the denominator in (18) is less than 1 aijd> d;.
Thus even though all weights are less than or equal to 1 a term can actuallyeggit.w

We assume the weights remain constant through each iteration. An ingrarentay gain weight due to the
presence of other terms of even lesser purity. However as more iterat®opsréormed, the weight transfer process
causes these terms to have lesser weight and thus reduces the weight tréodfiegghier terms. As a result of this
process, initially only the terms having the lowest purity in tbeument will lose weight. As these lose weight, terms
which are more pure will no longer be able to compensate their loss ghivebm these terms and will also start
losing weight. Thus the weight of each term will have a curve that ldikksFigure 3 (B). The term having the low
purity (Figure 3(A)) does not show the initial increase while tliegst term (Figure 3(C)) does not exhibit the final
falling part. The figures shows the change in the weight of a 3 ternfsdifferent purities in the same document for

10 iterations.

(A) (B) (C)

Figure 3: Column weight against number of iterations

We assume the following document model. Consldelasse<C; ... Ck. Each class has a specialized vocabulary
Vi. In addition there is a general vocabulary G. This model is illustratdéigare 4. We assume the most general
case thavi, Vi (| G # ¥ andVi, j, Vi (V] # #. Consider the set of words — (V1 ...|J W). Itis a reasonable
assumption to make that the words belonging to this class do notamgvaffinity to a particular class. Thus these
terms will have a purity close té. As we perform the weight adjustment process, these terms will tenal tm zero
first. Since these terms do not have any discriminant ability, there Iess of information by weight transfer out of
these terms. The next terms that would tend to go to zero would be thaseccur about equally ik — 1 of the
classes. Thus this process removes terms in increasing order of discingiability. The process should stopped
when the new representation starts losing terms which are importagistsiminating between classes. This is why
the validation portion of the training set is needed.

The algorithm in section (4.2) updates the purity vector after each itarafitlie analysis is more complicated
in this case. Each time the weight vector is applied the change of weightsno$ in centroids is related to term
dependencies. Consider two terms A and B which are perfectly correlated. Tl mvean theitf-idf values in each
document vector are the same, and hence so are the centroid @lyes; C18,Coa=C2,...,Cka =Ckp as
well as the puritiedPa = Pg. Now when we apply the weight vector, and re-normalize we know that theseme

11

Class 1 Class 2 Class k

ocabularyl Vocabulary?

General Vocabulary

Figure 4: Document Model

weight transfer from A to each term and vice-versa. It is easy to see that thetwaigtfer from A to B is canceled

by the weight transfer from B to A. If A and B were not correlated then theyaldvbe a net transfer from one to
the other. Thus term dependencies affect the weight transfer within a dotanteas a result affect weights in the
centroids. Recomputing the purity after each iteration uses these changddswvélg hypothesize that this allows
the scheme to capture some information about the dependencies which causedtit change in the first place.

6 Experimental Setup and Results

In this section we experimentally evaluate the effect of using featurehiva@justment schemes on the classification
accuracy of a centroid based classifier. Three different sets of experimenteseatpd. The first two experiments
focus on evaluating the accuracy of the classifier on data sets with redéthpls per document, by considering binary
classification for each class. The third evaluates the classifiek asg classifier.

In our experiments, we compared the performance of our weight adjussokemes against the performance
achieved by the following classifiers. We obtained results using tvealiclassifiers which used Rocchio and Widrow-
Hoff respectively to learn the weight vectors. In the case of Rocchio weaused, 8 = 16, y = 4 [25], whereas in
WH we used; = 0.5 and an initial vectow; = {0, 0, ..., 0}. We also ran SVNI® [16] using a polynomial kernel
with d =1 and a RBF kernel witly = 0.8 against the data sets. For the feature weight adjustment schemes we used
8 = 8. Other classifiers used includéNearest Neighbor with k = 10, C4.5 and the Naive Bayesian classifier. For the
naive bayesian we used Rainbow [29] with the multinomial event modath Be feature weighting schemes were
run with § = 8. All the classifiers except Naive Bayesian and C4.5 were run againstitffeepresentation of the
documents. These two were run against the boolean representation in laiditalar entryd; j is 1 if termt; occurs
in document;.

12

6.1 Reuters

The first data set that we used was the Reuters-21578 [24] text colleletiparticular, we used the “ModApte” split to
divide the text collection into a set of 9603 training documents a®® 32st documents. After eliminating stop-words
and removing terms that occur less than two times, the training corpuaieitl,001 distinct terms.

Table 1 shows the performance of the classifiers on the 10 most freqassesiin the Reuters data set. The columns
labeled “Rocchio” and “WH” shows the performance achieved by a linear classifiey e Rocchio and Widrow-
Hoff algorithms respectively to learn the weights. The next two cokisirow the performance of the SVM classifier
using a degree one polynomial kernel and a RBF kernel. The fifth colabeidd “Centroid” shows the performance
of the centroid classifier. The last two column shows the performandeafdntroid classifier after feature weights
have been adjusted by the fixed feature-weight adjustment (FWA) and tabledieature-weight adjustment (VWA)
algorithms respectively. Note that these algorithms were run withsing clustering. Table 1 also shows the the
micro-average [42] over all classes, the micro-average over the top 18<kasd the macro-average over the top 10
classes.

Rocchio| WH | SVM(poly) | SVM(rbf) | Centroid | FWA | VWA
earn 96.23 | 95.86 98.62 98.71 93.74 96.32 | 96.41
acq 79.00 | 87.60 91.24 95.27 91.79 | 91.93| 91.93
money-fx 55.31 | 67.04 70.39 78.21 63.68 | 66.48 | 66.48
grain 77.85 | 79.19 91.94 93.29 77.85 77.85| 77.85
crude 75.66 | 72.49 86.77 89.42 85.71 | 84.12| 84.12
trade 73.5 68.38 70.94 76.92 77.78 77.78 | 77.78
interest 70.23 | 66.41 63.36 74.81 75.56 75.56 | 75.56
wheat 74.65 | 85.92 78.87 84.51 74.65 | 80.28 | 80.28
ship 79.77 | 73.03 77.53 85.39 85.39 | 84.27 | 84.27
corn 60.71 | 64.29 80.36 85.71 62.5 62.5 | 62.5
Micro-average (top 10) 82.81 | 85.25 89.37 92.5 87.01 | 88.23| 88.27
Micro-average (all) 76.73 | 76.57 83.49 86.62 80.62 81.4 | 81.42
Average (top 10) 74.29 | 76.02 81.00 86.22 78.87 | 79.71| 79.72

Table 1: Precision / Recall break even points on Reuters

A number of interesting observations can be made from the resultssirtathie 1. First, comparing Rocchio,
Widrow-Hoff and the basic centroid scheme (the three fastest schemesgenhat overall the centroid scheme
performs substantially better than the rest followed by WH and then Rmdeh6 of the top 10 categories the centroid
scheme does best with WH dominating in the remaining 4. Second, we sehd¢hatight adjustment schemes
improve the performance of the centroid classifier, sometimes dramatidallyever both weight adjustment schemes
achieve the same level of performance. Third, SVM using a RBF kernet isvérall winner doing about 5% better
than the other schemes.

In addition to this we also tested the effect of clustering of the negatit (as described in section 4.3). These
results are presented in table 2 for 5, 10, 15 and 20 clusters. As can be sterirgthas a dramatic improvement in
the performance of the scheme. The number of clusters only slightlysatieetall performance but using 10 clusters
gives the best results. Comparing the results after clustering vat8¥M results we see that the SVM (poly) scheme
now has an overall micro-average about one percent less than using weigitmetjit SVM (rbf) does better by
about 2% now. The weight adjustment schemes dominate SVM(rbf) inti&dbp 10 classes. Once again both weight
adjustment schemes achieve the same performance.

13

FWA VWA

5 10 | 15 | 20 5 10 | 15 | 20
eamn 9558 | 95.76 | 94.94 | 94.66 | 95.68 | 95.21 | 94.94 | 94.66
acq 94.02 | 94.16 | 91.93| 92.9 | 94.02| 94.16 | 91.93 | 92.9
money-fx 72.07| 77.1 | 77.1 | 77.65| 73.18 | 76.54 | 77.1 | 77.65
grain 85.23 | 91.28 | 87.92 | 88.59 | 85.23 | 91.95 | 93.96 | 88.59
crude 85.71 | 84.66 | 86.24 | 86.24 | 85.71 | 84.65 | 86.24 | 86.24
trade 77.78 | 79.49 | 79.49 | 78.63 | 77.78 | 79.49 | 79.49 | 78.63
interest 71.76 | 73.28 | 74.05| 74.05| 71.76 | 73.28 | 74.05 | 74.05
wheat 87.32 | 87.32| 85.92| 85.92| 85.92 | 87.33 | 85.92 | 85.92
ship 82.02 | 85.39 | 84.27 | 84.27 | 82.02 | 85.39 | 84.27 | 84.27
corn 76.79| 87.5 | 85.71| 87.5 | 76.79| 87.5 | 85.71| 875
Micro-average (top 10| 89.56 | 90.71 | 89.67 | 89.88 | 89.63 | 90.49 | 89.99 | 89.88
Micro-average (all) | 83.16 | 84.69 | 84.25 | 84.33 | 83.21 | 84.59 | 84.56 | 84.35
Average (top 10) 82.83 | 85.59 | 84.76 | 85.04 | 82.81 | 85.55 | 85.36 | 85.04

Table 2: Effect of clustering

6.2 OHSUMED results

Table 3 gives the same data in Table 1 for the OHSUMED [14] data set.sét faom the OHSUMED data, those
documents with id’s between 100000 and 120000 which had either thettileth the title and the abstract. The
classification task considered here is to assign the document to one plencdtegories of the 23 MeSH “diseases”
categories.. There were 19858 entries in the data set. The first 12@08sefwere used in the training set and the
remaining formed the test set. A total of 6561 documents did not have lalasl assigned to them. 6199 documents
belonged to multiple classes.

Once again comparing Rocchio, Widrow-Hoff and the centroid scheme weathéhcentroid scheme performs
the best among the three on this data set. Rather surprisingly Widodfihas a very poor performance on this data
set and is dominated completely by Rocchio, performing better in only BeoP8 categories. The centroid based
scheme dominates both of them in all 23 categories. Both weight adjussciegines achieve similar performances
and improve the accuracy of basic centroid scheme by about 3 %. Even wifoetgring the schemes achieve a
higher micro-average than the SVM(poly) scheme and perform better thrahGtof the 23 classes. SVM(rbf) again
performs the best. It achieves a micro-average about 5% higher than thedhi&me and performs better in 22 of the
23 categories.

The results for the weight-adjustment schemes after clustering are shawtable 4. Clustering has almost no
effect on accuracy. In fact in some cases it actually reduces accuracy. Overall usistebsalives the best result for
this data set and the results are about 4-5% lower than those for th¢rBfystheme. One interesting result in this
table is that each of the different levels of clustering improves accuraonie &f the data sets For example, for FWA
no clustering gives the best results for classes ¢23 and c0, while usingtbrel gives the best result for classes c14
and c04. Similarly trends can be seen in the other classes.

6.3 Multi-Class results

Our final set of results are from using the centroid-based classifiek-agagy classifier. Table 6.3 shows the perfor-
mance of the various classifiers. The column “NB” shows the performantteeafaive-bayesian classifier. “C4.5"
shows the performance of the standard decision tree classifier wWhi™gives the the performance of tikenearest
neighbor algorithm.

14

rocc wh SVM(poly) | SVM(rbf) | centroid| FWA | VWA
c23 38.65 | 42.16 47.70 56.38 51.59 | 53.19| 53.38
c20 46.72 | 37.80 57.48 70.08 53.81 | 64.83 | 65.88
cla 58.26 | 56.03 67.41 75.11 69.53 | 71.99 | 72.21
c04 48.96 | 46.19 51.21 64.19 59.34 | 60.21 | 60.21
c06 47.26 | 38.23 59.82 68.32 62.83 | 66.37 | 66.19
c21 47.51| 42.04 52.02 58.57 57.96 | 60.10 | 60.10
clo 31.16 | 25.00 45.55 57.53 41.10 | 51.71| 51.37
c08 43.96 | 37.92 51.34 58.72 52.35 | 54.36 | 54.36
cl9 54.85| 36.08 62.45 73.20 60.13 | 61.39 | 61.39
cl7 31.45| 20.49 50.53 59.72 51.94 | 58.30 | 59.01
c01 40.25 | 36.96 52.66 61.52 52.15 | 52.15| 52.15
c05 29.51 | 24.59 46.45 56.83 42.08 | 43.17| 43.17
cl13 39.65 | 34.62 50.89 61.83 51.48 | 53.25| 53.25
cl2 46.12 | 38.36 52.97 61.64 50.91 | 51.37 | 51.37
cl5 16.57 | 7.73 46.41 53.89 40.33 | 51.93| 48.62
clé 43.34 | 33.10 47.44 58.36 50.85 | 52.21| 52.22
cl8 23.08 | 9.40 41.45 45.30 27.35 | 32.05| 32.05
cli 52.73 | 14.55 60.91 66.36 62.73 | 63.63 | 63.64
c07 35.52 | 19.74 36.84 46.05 4211 | 42.11| 42.11
c09 56.69 | 24.41 63.78 66.93 58.27 | 62.20 | 62.20
c22 13.43 | 20.90 13.64 16.42 17.91 | 16.42| 16.42
c03 36.13 | 21.85 42.86 50.42 37.81 | 37.82| 37.82
c02 34.15| 12.20 51.22 56.10 50.00 | 50.00 | 50.00
average 39.82 | 29.58 50.13 58.41 49.76 | 52.64 | 52.57
micro-average| 43.30 | 36.98 53.12 62.23 53.89 | 57.04 | 57.12

Table 3: OHSUMED results

The detailed characteristics of the various document collections used iexiigsiments are available in [12]
Note that for all data sets, we used a stop-list to remove common yamdshe words were stemmed using Porter’s
suffix-stripping algorithm [30]. Furthermore, we selected documsmth that each document has only one class (or
label). In other words, given a set of classes, we collected documents tleadfiignone class from the set.

The first three data setsestl, west2, west@re from the statutory collections of the legal document publishing
division of West Group described in [7]. Data sbtkl, tr12, tr21, tr23, tr31, trdl, trd5, fbis, lal, la2, |& andnew3
are derived from TREC-5 [34], TREC-6 [34], and TREC-7 [34] collestioData sets20 andrel are from Reuters-
21578 text categorization test collection Distribution 1.0 [24]. Mfaoved dominant classes such as “earn” and “acq”
that have been shown to be relatively easy to classify. We then divide@nheining classes into 2 sets. Data sets
oh0, oh5, oh10, ohl®ndohscalare from OHSUMED collection [14] subset of MEDLINE database. Datavegt
is from the WebACE project (WAP) [3]. Each document corresponds to a agé listed in the subject hierarchy of
Yahoo! [40].

Table 6.3 shows the performance of the weight adjustment schenkeresy/eclassifier. The accuracy was measured
by performing a 80-20 split on the data and a<1€ross-validation. The numbers in bold faces indicate the winning
algorithms on a particular data set. Between them the three centroid base@sclmeminate in 19 of the 23 classes.If
we compar&k-NN, naive bayesian and C4.5 amongst each other we see that C4.5 does thieNeared by k-NN
and Naive Bayesian performs the best. The basic centroid scheme domintisseafind weight adjustment tends to
improve its performance.

1These data sets are available frottp://www.cs.umn.edu/"han/data/tmdata.tar.gz

15

FWA VWA
5 10 15 20 5 10 15 20
c23 50.19 | 43.37 | 42.73 | 41.14| 50.51 | 43.37 | 42.79 | 41.14
c20 59.97 | 55.38 | 48.16 | 42.26 | 60.24 | 55.38 | 46.98 | 43.89
cl4 71.99 | 69.98 | 65.74 | 65.29 | 74.11 | 69.87 | 66.96 | 64.17
c04 60.21 | 56.06 | 55.88 | 47.23 | 61.94 | 54.84 | 55.36 | 44.81
c06 64.96 | 64.07 | 62.48 | 58.23 | 64.96 | 64.53 | 62.65 | 57.87
c21 61.05| 56.29 | 55.34 | 54.63 | 60.57 | 56.29 | 56.53 | 55.00
c10 54.79 | 54.11| 46.92 | 45.21 | 54.79 | 53.77 | 47.95| 43.84
c08 53.36 | 50.00 | 48.66 | 51.01 | 53.36 | 50.00 | 48.32 | 47.99
c19 69.20 | 70.25| 70.04 | 63.71| 69.41 | 70.25| 70.04 | 64.14
cl7 58.66 | 58.66 | 56.54 | 56.18 | 59.01 | 59.36 | 57.19 | 53.36
c01 56.71 | 56.20 | 60.76 | 57.97 | 56.71 | 56.20 | 61.01 | 57.21
c05 53.01 | 51.37| 50.82 | 48.09 | 53.01 | 49.18 | 51.91 | 48.63
c13 52.66 | 52.37 | 55.03 | 54.44 | 52.67 | 53.25 | 54.44 | 55.33
cl2 54.11 | 54.34 | 55.71 | 55.38 | 54.34 | 59.13 | 55.71 | 56.75
c15 49.72 | 45.86 | 43.82 | 41.98 | 49.17 | 44.75| 41.99 | 39.44
cl6 51.88 | 54.27 | 49.83 | 49.49 | 51.88 | 54.61 | 49.82 | 50.69
c18 40.17 | 37.18 | 36.32 | 29.49 | 40.60 | 38.46 | 35.47 | 29.49
cl1 60.00 | 58.18 | 60.91 | 62.73 | 60.00 | 58.18 | 60.91 | 65.45
c07 42.11| 40.79 | 42.11| 40.79 | 42.11| 40.79 | 42.11| 40.79
c09 64.57 | 61.42| 65.35| 66.93 | 64.57 | 61.42 | 65.35| 66.14
c22 1791 | 17.91| 1493 | 13.43| 1791 | 17.91| 14.93 | 13.43
c03 42.86 | 41.18 | 47.90 | 48.74 | 42.86 | 41.18 | 47.06 | 48.74
c02 43.90 | 47.56 | 48.78 | 53.75 | 45.12 | 47.56 | 48.78 | 50.00
average 53.79 | 52.03 | 51.51| 49.92| 53.90 | 52.19 | 51.49 | 49.49
micro-average| 57.51 | 54.57 | 53.21 | 50.78 | 57.67 | 54.76 | 53.25 | 50.48

Table 4: OHSUMED clustering

In all three data sets, it can be seen that the VWA scheme does not do appreet&dalyian the FWA scheme.
We believe that the VWA scheme has some inbuilt mechanisms for hartdlimgdependencies based on change in
centroid weights and the resulting change in purities. However thétsetmnot seem to indicate this. Part of the
reason seems to be that the purity changes relatively slowly because of owmisetfor dampening weight transfer.
Since the number of iterations is small in most of the data sets, témathat the changes in purity, even added up,
are probably not substantial enough to make a difference in the classffieatturacy.

6.4 Efficiency

One of the advantages of our weight adjusted centroid scheme is its spegidciéssed in section 4 model learning
time is linear in the number of non zero terms in the document-term naatdxclassification time is linear in number
of classes. A comparison of running time was performed between thditevfh6] code with the polynomial kernel,
the RBF kernel and the centroid based scheme with VWA and is reported in6lablese times were obtained on a
P3 500MHz workstation running Redhat 6 with 1 Gig of memory, uniteilar load conditions. Looking at this table
we can see that VWA is about 2 - 10 times faster than SVM(rbf) in the leaptiage and about 10 - 20 times faster
in the classification phase.

16

NB | C4.5| kNN | centroid | FWA | VWA
westl | 86.0 | 85.5 | 82.9 90.8 92 92.2
west2 | 76.5| 75.3 | 77.2 82.0 84.2 83.9
west3 | 75.1| 73.5 | 76.1 83.0 83.6 | 839
oh0 89.1| 82.8 | 84.4 90.8 92 92.2
oh5 87.1| 79.6 | 85.6 89.3 91.4 | 91.7
ohl0 | 81.2| 73.1| 775 81.9 83.9 83.9
ohl5 | 84.0| 75.2 | 81.7 85.9 86.4 | 86.5
re0 811 | 75.8 | 77.9 78.2 773 | 77.2
rel 80.5| 77.9 | 78.9 82.7 82.4 | 82.4
tril 85.3| 78.2 | 85.3 86.5 86.9 87

tri2 79.8 | 79.2 | 85.7 89.7 88.5 | 88.5
tr21 59.6 | 81.3 | 89.2 90.7 91.1 | 91.3
tr23 69.3 | 90.7 | 81.7 87.0 91.7 91.1
tr31 94.1| 93.3 | 93.9 94.5 954 | 954
tr41 945 | 89.6 | 93.5 95.8 95.6 | 95.7
tr45 84.7| 91.3 | 91.1 94.7 94.9 94.9
lal 87.6 | 75.2 | 82.7 86.4 86.7 | 86.7
la2 899 | 77.3 | 84.1 88.5 88.4 | 88.2
la12 89.2 | 79.4 | 85.2 88.0 87.9 | 87.9
fbis 779 | 73.6 | 78.0 79.2 79.3 79.3
wap 80.6 | 68.1 | 75.1 82.5 82.5 82.5
ohscal| 74.6 | 71.5 | 625 76.7 80.4 | 805
new3 | 74.4| 735 | 67.9 80.2 80.1 | 80.1

Table 5: Classification Accuracy

7 Conclusion

In this report we showed how a weight adjustment scheme improves theaagaira centroid based classifier. This
scheme retains the power of the centroid based classifier while further emfpéscability. Also it retains much of
the speed of the original scheme. In terms of future work, clusterindp&as shown to be useful in improving the
accuracy of this scheme. Clustering is needed in order to handle multi-misttdutions which this scheme cannot
handle in its current form. Automatically determining whether a class rtedats clustered and how many clusters it
should be divided into would be an interesting problem. As it stainesnalysis of the algorithm is still incomplete.
It would be beneficial to have a more rigorous analysis of this schemitsastdengths and weaknesses.

SVM(poly) SVM(rbf) VWA (10 clusters)
learn | classify | learn | classify | learn | classify
earn 66 17 136 36 19 1
acq 103 17 190 42 20 1
money-fx | 125 10 144 23 24 1
grain 33 8 71 19 29 1
crude 46 9 78 20 21 1
trade 63 9 88 23 22 2
interest 146 7 119 15 23 1
wheat 39 5 55 11 24 2
ship 30 5 59 15 25 1
corn 25 6 41 11 31 1

Table 6: Run time comparison (all times in seconds)

17

References

(1]
(2]
(3]

(4]
(5]

(6]
(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]
(23]

[24]
[25]

M. B. Amin and S. Shekhar. Generalization by neural neksoProc. of the 8th Int'| Conf. on Data EngApril 1992.

L. Baker and A. McCallum. Distributional clustering ofords for text classification. I8IGIR-98 1998.

D. Boley, M. Gini, R. Gross, E.H. Han, K. Hastings, G. Kpiy, V. Kumar, B. Mobasher, and J. Moore. Document catego-
rization and query generation on the world wide web using A@&b. Al Review (accepted for publicatiqr)999.

W.W. Cohen. Fast effective rule induction. Rroc. of the Twelfth International Conference on Machinarnég, 1995.

W.W. Cohen and H. Hirsh. Joins that generalize: Textsifamtion using WHIRL. IrProc. of the Fourth Int'l Conference on
Knowledge Discovery and Data Minin$998.

C. Cortes and V. Vapnik. Support vector networkéachine Learning20:273-297, 1995.

T. Curran and P. Thompson. Automatic categorizationtatfise documents. IRroc. of the 8th ASIS SIG/CR Classification
Research Workshopucson, Arizona, 1997.

D.J. Spiegelhalter D. Michie and C.C. Taylddachine Learning, Neural and Statistical Classificatidtilis Horwood, 1994.

W. Daelemans, S. Gills, and G. Durieux. Learnability andrkedness in data-driven acquisition of stress. TechRieport
TR 43, Institute for Language Technology and Atrtificial ltiteence, Tilburg University, Netherlands, 1993.

R.O. Duda and P.E. HarPattern Classification and Scene Analyslshn Wiley & Sons, 1973.

D. E. Goldberg.Genetic Algorithms in Search, Optimizations and Machinarhimg. Morgan-Kaufman, 1989.

E.H. Han and G. Karypis. Centroid-based document iflagon algorithms: Analysis & experimental results. Maical
Report TR-00-017, Department of Computer Science, Uniyes$ Minnesota, Minneapolis, 2000. Available on the WWW
at URL http://www.cs.umn.edu/"karypis

Eui-Hong Han. Text Categorization Using Weight AdjustkdNearest Neighbor ClassificationPhD thesis, University of
Minnesota, October 1999.

W. Hersh, C. Buckley, T.J. Leone, and D. Hickam. OHSUME interactive retrieval evaluation and new large test
collection for research. IBIGIR-94 pages 192-201, 1994.

Makato Iwayama and Takenobu Tokunaga. Cluster-baseadategorization: a comparison of category search giesteln
SIGIR-95 pages 273-281, 1995.

T. Joachims. Text categorization with support vectachines: Learning with many relevant features. Phoc. of the
European Conference on Machine Learninag98.

K. Kiraand L.A. Rendell. A practical approach to feaselection. IrProc. of the 10th International Conference on Machine
Learning 1992.

I. Kononenko. Estimating attributes: Analysis andemdions of relief. IfProc. of the 1994 European Conference on Machine
Learning 1994.

Wai Lam and Chao Yang Ho. Using a generalized instancfosautomatic text categorization. BIGIR-98 1998.

Bjornar Larsen and Chinatsu Aone. Fast and effectixenténing using linear-time document clustering.Rroc. of the Fifth
ACM SIGKDD Int'l Conference on Knowledge Discovery and Didiaing, pages 16-22, 1999.

D. Lewis. Naive (bayes) at forty: The independence ag#ion in information retrieval. ITenth European Conference on
Machine Learning1998.

D. Lewis and W. Gale. A sequential algorithm for traigitext classifiers. I8IGIR-94 1994.

D. Lewis and M. Ringuette. Comparison of two learningaalthms for text categorization. IRroc. of the Third Annual
Symposium on Document Analysis and Information Retrié@4.

D. D. Lewis. Reuters-21578 text categorization tediection distribution 1.0 http://www.research.att.comlewis, 1999.

David D. Lewis, Robert E. Shapire, James P. Callan, amdl Rapka. Training algorithms for linear text classifiers Pto-
ceedings of the 19 th Annual International ACM SIGIR Comfeeeon Research and Development in Information Retrjeval
pages pages 298-306, 1996.

18

[26]
[27]

(28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

[43]

A

D.G. Lowe. Similarity metric learning for a variabletnel classifierNeural Computationpages 72—85, January 1995.

B. Masand, G. Linoff, and D. Waltz. Classifying newsris using memory based reasoning. SiGIR-92 pages 59-64,
1992.

A. McCallum and K. Nigam. A comparison of event models fiaive bayes text classification. KAAI-98 Workshop on
Learning for Text Categorizatiori998.

Andrew Kachites McCallum. Bow: A toolkit for statisti€language modeling, text retrieval, classification andtering.
http://www.cs.cmu.edu/ mccallum/bow, 1996.

M. F. Porter. An algorithm for suffix stripping?rogram 14(3):130-137, 1980.
J. Ross QuinlanC4.5: Programs for Machine Learnindlorgan Kaufmann, San Mateo, CA, 1993.

J.J. Jr. Rocchio. The SMART retrieval system: Experitaén automatic document processing. In Gerard Saltonoredi
Relevance feedback in information retrievatentice-Hall, Inc., 1971.

G. Salton. Automatic Text Processing: The Transformation, Analyasis, Retrieval of Information by ComputeAddison-
Wesley, 1989.

TREC. Text REtrieval conferencéttp://trec.nist.gov
V. Vapnic. The Nature of Statistical Learning Theor$pringer, 1995.

S.M. Weiss and C. A. Kulikowski.Computer Systems that Learn: Classification and Predidiitmthods from Statistics,
Neural Nets, Machine Learning, and Expert Systekigrgan Kaufmann, San Mateo, CA, 1991.

D. Wettschereck, D.W. Aha, and T. Mohri. A review and éngal evaluation of feature-weighting methods for a clags
lazy learning algorithmsAl Review 11, 1997.

D. Wettschereck and T.G. Dietterich. An experimentahparison of the nearest neighbor and nearest hyperréetalgg-
rithms. Machine Learning19:5-28, 1995.

B. Widrow and S.D. Stearn®\daptive Signal Processindrentic-Hall, Inc., 1985.
Yahoo! Yahoo! http://www.yahoo.com.

Y. Yang. Expert network: Effective and efficient leargifrom human decisions in text categorization and rettieva
SIGIR-94 1994.

Y. Yang and X. Liu. A re-examination of text categorizeat methods. IISIGIR-99 1999.

Y. Yang and J. Pederson. A comparative study on fealex8on in text categorization. Rroc. of the Fourteenth Interna-
tional Conference on Machine Learnint997.

Associativity of weighing

We wish to show that applying a weight vectf = {Wi, Wj, ..., W;}, during thei " iteration and normalizing the
vector after each iteration far iterations is the same as applying the vedtoe= {5, Wi, T, Wi, ..., T W/}

and normalizing once. This can be shown by induction. Consider a v@cetday, ap, . .., a}. Applying the weight

vectorW?! once and normalizing it gives us the new veddr= {. ..

wa

/Z (Vvil)z_a1_2 :

..}. This is the base case. Let us

assume that k applications of this gives us the vector

(TTK_, W)ay

V2 (MF_ Wi)2a?

a<={ (19)

19

Applying the weight vectowk+1 = (WK1 wik+t w1} gives us
mehwha
V2 (I WH2a?

k+1wry2.92 . . . - .
The magnitude of this vector | %—ﬁ% Thus the normalized vector is obtained by dividing vector in (20) by
r=1"" i

its magnitude which gives us

{.. (20)

(WD) - &

.)
V2 (FEIW)2a2

Thus having shown that the statement is truelfee 1 and that if it is true fok, it is true fork + 1, the statement
is true for allL.

{.. (21)

The optimization discussed in Section (4.1) is a special case in \AM?C& V\/i2 =...= V\/i'-.

20

